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CONSPECTUS: Localized molecular orbitals (LMO) not only serve as an
important bridge between chemical intuition and molecular wave functions
but also can be employed to reduce the computational cost of many-body
methods for electron correlation and excitation. Therefore, how to localize the
usually completely delocalized canonical molecular orbitals (CMO) into
confined physical spaces has long been an important topic: It has a long
history but still remains active to date.
While the known LMOs can be classified into (exact) orthonormal and
nonorthogonal, as well as (approximate) absolutely localized MOs, the ways
for achieving these can be classified into two categories, a posteriori top-down
and a priori bottom-up, depending on whether they invoke the global CMOs
(or equivalently the molecular density matrix). While the top-down
approaches have to face heavy tasks of minimizing or maximizing a given
localization functional typically of many adjacent local extrema, the bottom-up ones have to invoke some tedious procedures for
first generating a local basis composed of well-defined occupied and unoccupied subsets and then maintaining or resuming the
locality when solving the Hartree−Fock/Kohn−Sham (HF/KS) optimization condition.
It is shown here that the good of these kinds of approaches can be combined together to form a very efficient hybrid approach
that can generate the desired LMOs for any kind of gapped molecules. Specifically, a top-down localization functional, applied to
individual small subsystems only, is minimized to generate an orthonormal local basis composed of functions centered on the
preset chemical fragments. The familiar notion for atomic cores, lone pairs, and chemical bonds emerges here automatically. Such
a local basis is then employed in the global HF/KS calculation, after which a least action is taken toward the final orthonormal
localized molecular orbitals (LMO), both occupied and virtual. This last step is very cheap, implying that, after the CMOs, the
LMOs can be obtained essentially for free. Because molecular fragments are taken as the basic elements, the approach is in the
spirit of “from fragments to molecule”. Two representatives of highly conjugated molecules, that is, C12H2 and C60, are taken as
showcases for demonstrating the success of the proposed approach. The use of the so-obtained LMOs will lead naturally to low-
order scaling post-HF/KS methods for electron correlation or excitation. In addition, the underlying fragment picture allows for
easy and pictorial interpretations of the correlation/excitation dynamics.

1. INTRODUCTION

It has long been known that localized molecular orbitals
(LMOs) serve as an important bridge between chemical
intuition (Lewis structure, functional group, etc.) and molecular
wave functions, which are otherwise delocalized throughout the
physical space. In addition, LMOs can be utilized to reduce the
computational scaling of correlated wave function methods,
since the number of virtual orbitals needed for the correlation
of each electron pair may then be reduced dramatically. A large
number of unitary localization schemes1−24 and optimization
algorithms25−28 have been proposed in the past. They all work
well for the occupied space. However, only few of them13−23

are robust also for the full virtual space. At variance with such
unitary transformations, a nonsymmetric transformation was
also proposed29,30 to construct nonorthogonal LMOs (NOL-
MOs). Due to the absence of “orthogonalization tails”, such
NOLMOs are more localized than orthonormal LMOs. Yet,
they cannot readily be utilized in many-body methods for
correlation and excitation, except for those that involve only the

manifold of single excitations, for example, time-dependent
density functional theory (TD-DFT). There exists also a third
type of approach, the so-called locally projected self-consistent
field (SCF),31−33 which by construction generates “absolutely
localized MOs” (ALMOs), each of which is expanded in terms
only of the basis functions belonging to a given molecular
component. Although they are very useful in interpreting
various physical phenomena, such ALMOs do not satisfy the
Brillouin condition and are hence intrinsically approximate.
From an algorithmic point of view, the available unitary

localization schemes can be classified into two classes, a
posteriori top-down1−21 and a priori bottom-up.21−24 The
former starts with the global CMOs or molecular density matrix
already satisfying the Brillouin condition and tries to obtain the
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LMOs via some locality criteria, Ω[{ψi}i=1
N ] defined only by the

CMOs {ψi}i=1
N and intrinsic quantities such as multipole

moments, overlap matrix, etc. In contrast, the latter starts
with an initial local basis {ϕμ}μ=1

K (K ≥ N) and tries to preserve
the locality as much as possible when the Brillouin condition is
solved iteratively. Notwithstanding this distinction, the LMOs
by the two classes of approaches are localized in similar physical
spaces.
The locality criteria invoked by the popular top-down

localization schemes can be written into a generic form

∑ψ ψ ψΩ = | ⃗ | ⃗ = ⟨ | ⃗ | ⟩A A A[{ }] ,i
i

N

ii ii i i i
2

(1)

where A⃗i
BF = (x, y, z) corresponds to the well-known Foster−

Boys (FB) functional,1,2 maximization of which gives rise to the
LMOs that have maximal separation between the orbital
centers. It can also be recast into a form that minimizes the sum
of the second moments (variances) (Ω2)i, namely,
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where (σ2m)i is the 2m-th moment spread of orbital ψi. The
problems with the FB localization are twofold. First, a small 1Ω2
does not imply that every second moment (Ω2)i is small.
Second, even if an orbital has a thick tail, a small 1Ω2 can still
occur. For these reasons, Jørgensen19,20 introduced a modified
FB functional
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where the power n is called “penalty exponent”. For a given
moment 2m, minimization of nΩ2m with n > 1 will tighten those
orbitals with largest orbital spreads (OS), as compared with n =
1. However, this comes at the expense that the orbitals with
smaller OSs will become loosened. In practice, n = 2 turns out
to be a good choice.19 For comparison, n < 1 does the opposite.
The case of n = 0.5 and m = 1, not yet considered before, is
particularly interesting, because it amounts to directly
minimizing the standard (second moment) OSs (σ2)i. Likewise,
for a given power n, m > 1 will tighten the tails of the LMOs, as
compared with m = 1.
The choice of A⃗i

ER = ∫ d3r′⃗|ψi(r′)|2/|r ⃗ − r′⃗| in eq 1
corresponds to the Edmiston−Ruedenberg (ER) functional,3,4

maximization of which yields orbitals that have maximal self-
repulsion and hence minimal exchange energy. Similarly, the
choice of A⃗i = |ψi(r)|

2 corresponds to the von Neissen
functional,6 which amounts to maximizing the sum of the
charge density self-overlaps. The Pipek−Mezey (PM) func-
tional8 is defined by A⃗i

PM = (PA, PB, ...), with PA being the
projector of atom A. While the Mulliken population analysis
was used originally, other population analyses are also possible.9

In essence, the numbers of atoms constituting the LMOs are
minimized here.
Once a localization functional is chosen, any optimization

algorithm can be employed.25−27 Given a good start,
asymptotically linear scaling can eventually be achieved,28

demonstrated only for the occupied space though. Still,
however, one has to remember that any localization functional
for the virtual space has too many adjacent local extrema,

implying that the optimization will become more and more
difficult as the size (measured by the number of atoms or basis
functions) of the systems increases. The question to be asked is
then: Is it possible to alleviate the optimization? It will be
shown here that this is indeed possible by combining the good
of the top-down and bottom-up schemes. Briefly, the top-down
localization is applied only to small subsystems for generating a
well-behaved local basis. A least-change action is then taken
toward the final LMOs, both occupied and virtual. The
computational overhead in preparing the local basis is
overcompensated by the reduced number of SCF iterations,
whereas the least-change step costs essentially nothing. That is,
after the CMOs, the LMOs can be obtained for free. Because
molecular fragments are taken here as the basic elements, the
approach is in the spirit of “from fragments to molecule”.21

Different from other fragmentation schemes where only the
energy is “conquered”, both the energy and wave function are
here divided and conquered.

2. THE LEAST-CHANGE ALGORITHM
Suppose we have an orthonormal local basis {|ϕμ⟩}μ=1

K whose
occupied components can be projected out as

∑ ∑ϕ ϕ ψ ψ ϕ ψ
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where {|ψi⟩}i=1
N are the occupied CMOs. The functions {|

ϕ̅μ⟩}μ=1
K are generally nonorthogonal, with the overlap being

ϕ ϕ ϕ ϕ= ⟨ ̅ | ̅⟩ = = ⟨ | ̂ | ⟩μν μ ν μν μ ν
†S PCC[ ] o (5)

which is nothing but the matrix representation of P̂o in the local
basis {|ϕμ⟩}μ=1

K . A singular value decomposition can be applied
to decompose C as

λ= = =† † †C L R L L I R R I, ,K N (6)

where λ is a K × N real-valued diagonal matrix, whereas L and
R are the K × K and N × N unitary eigenvector matrices of
CC† and C†C, respectively,

λ=†CC L L 2 (7)

λ=†C CR R 2 (8)

It is always possible to choose the phases of the column vectors
of L and R such that ∀λi ≥ 0. Two sets of orthonormal orbitals
can now be introduced

∑ψ ψ| ′⟩ = | ⟩ =
=

R i N, 1, ...i
j

N

j ji
1 (9)

∑ϕ ϕ μ| ′⟩ = | ⟩ =μ
ν

ν νμ
=

L K, 1, ...
K

1 (10)

Since L diagonalizes the density matrix S, {|ϕμ′⟩} can be
interpreted as natural orbitals represented in the local basis {|
ϕμ⟩}. For instance, if {|ϕμ⟩} are chosen to be the orthonormal
atomic orbitals (OAOs) centered on an atom, {|ϕμ′⟩} would be
the natural atomic orbitals (NAOs).34 Likewise, if {|ϕμ⟩} are
the OAOs centered on two atoms, {|ϕμ′⟩} would be the natural
bond orbitals (NBOs).35 However, {|ϕμ′⟩} are not yet within
the occupied space. Only those ϕμ′ associated with λi ≈ 1 are
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good candidates for the occupied orbitals, while those
associated with λi ≈ 0 belong to the unoccupied space. In
contrast, the functions {|ψi′⟩} all stay within the occupied space.
For those column eigenvectors of L and R of nonzero
eigenvalues, the corresponding functions {|ϕμ′⟩} and {|ψi′⟩}
form pairs, namely,

ϕ ψ δ λ⟨ ′| ′⟩ = =μ μ μ
†L CR[ ]i i i i (11)

In this case, {ψi′⟩} can be recognized as canonical
orthonormalization of the projected functions {ϕ̅μ} (eq 4),

∑ ∑ψ ψ λ ϕ λ| ′⟩ = | ⟩ = | ̅ ⟩
μ

μ μ
† − −LC L( )i

j

N

j ji i i
1 1

(12)

Therefore, even if {ϕ̅μ} projected from {ϕμ} are local, {ψi′} are
not necessarily local to the same extent, since canonical
orthonormalization often ruins the locality. Nevertheless, if
{ϕμ} are all located in a particular region of space (e.g., some
fragment of a molecule), the resulting {|ψi′⟩} functions would
strictly be localized in the same region. This point was
employed by Zoboko and Mayer12 to construct occupied
LMOs {|ψi′⟩} that are orthonormal and delocalized within a
fragment but are nonorthogonal between fragments. A least
change from {|ϕ̅μ⟩} is only achieved by the well-known Löwdin
symmetric orthonormalization. However, some constraints
must be imposed on the initial local basis {ϕμ}μ=1

K , namely, K
= N and ∀λi > 0. Under such conditions, the desired occupied
orthonormal LMOs {|ϕ̃μ⟩} can be obtained as follows
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The least change is of course defined in a least-squares sense.
To see this, we can minimize the following functional

∑
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Since A is unitary (i.e., |Aii| ≤ 1) and λi > 0, the minimum is
achieved36 at A = 1, thereby leading to T = RL† (eq 13). As
such, the so-obtained {|ϕ̃μ⟩}μ=1

N are most similar to the initial
local basis {ϕμ}μ=1

N .
Minimization of functional 14 is equivalent to maximization

of ∑ ϕ ϕ̃
μ μ μ=

N

1
, which can further be generalized to

maximization of the following functional
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This is in the spirit of the modified FB functional 3. Use of n =
2 was made by Angeli et al.10 to construct LMOs. However, at
variance with n = 1, which permits an analytic solution (eq 14),
the cases of n > 1 require some optimization algorithm, just like
the aforementioned top-down localization schemes. Therefore,
the least-change algorithm (eq 14) is preferred.
The above least-change algorithm can also be applied to the

virtual CMOs by replacing P̂o (eq 4) with P̂v = ∑i=N+1|ψi⟩⟨ψi|.
Since the unitary transformations going from CMOs to LMOs

are to be carried out for the occupied and virtual spaces
separately, the overall transformation matrix T is block-diagonal
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Further expanding the CMOs {|ψi⟩} in terms of the initial local
basis {ϕμ},
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we can express the LMOs {ϕ̃μ} as
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which can also be rewritten as

= − † +
−

−
−

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟U I X

X I

N

N

0

0

1

1
(21)

= + = ++
†

−
†N I X X N I XX( ) , ( )1/2 1/2

(22)

= = −− † − †X C C C C( )vo oo
1

vv
1

ov (23)

Equations 18 and 19, presented differently in ref 17, imply that
the F matrix in the local basis {ϕμ} is first diagonalized via C
and then block-diagonalized via T,

= = =† † † †U FU T C FCT U FU( ) ( ) 0 ( )vo vo ov (24)

The resulting full LMOs ϕLMO = {ϕ̃μ} are related to the CMOs
ϕCMO = {ψp}, initial local functions ϕ

pLMO = {ϕμ}, and atomic
orbitals (AOs) ϕAO = {χμ} as follows:

ϕ ϕ ϕ ϕ= = = †U L U TLMO pLMO AO pLMO CMO (25)

At variance with the above “top-down, least-change”
algorithm, we can also design a “bottom-up, least-change”
algorithm without recourse to the CMOs. Specifically, the
requirement of eq 24 dictates that the decoupling matrix X
should satisfy the following Riccatti equation

+ − − =F F X XF XF X 0.vo vv oo ov (26)

For a given F matrix, eq 26 can be solved iteratively with the
efficient algorithms proposed when reducing the matrix Dirac
equation down to the exact two-component equation.37 Such
(micro)iterations usually converge very fast, as long as there
exists a gap between the largest eigenvalue of Foo and the
smallest eigenvalue of Fvv. The resulting X matrix can be
employed to construct the unitary matrix U (eq 21) and then
the density matrix P = UnU† that is needed for constructing a
new F matrix in the (macro-) SCF iterations. The global CMOs
are hence avoided completely. If needed, they can be recovered
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by virtue of the relation C = UT†, with T† being the solutions
of the following eigenvalue equations

ε̃ = =† † †
+F T T T N C,oo oo oo o oo oo (27)

ε̃ = =† † †
−F T T T N C,vv vv vv v vv vv (28)

where F̃oo and F̃vv are the diagonal blocks of U†FU

̃ = + + ++
− † †

+
−F N F X F F X X F X N( )oo

1
oo vo ov vv

1
(29)

̃ = − − +−
− † †

−
−F N F XF F X XF X N( )vv

1
vv ov vo oo

1
(30)

Instead of solving eq 26 for a given F, the unitary
transformation matrix (denoted as Ũ) can also be constructed21

by solving the simpler linear Sylvester equation

+ − =F F X X F 0i i i i i
vo
( )

vv
( ) ( ) ( )

oo
( )

(31)

by diagonalizing both Foo
(i) and Fvv

(i). The starting point is F(0) =
F. In terms of the so-obtained X(i), the U(i) and hence F(i+1) =
U(i)†F(i)U(i) matrices can be constructed. The iterations
continue until Fvo

(i+1) = X(i+1) = 0. The final unitary matrix Ũ
is the product of all the U(i) and may differ from the U (eq 21)
resulting from eq 26 by some unitary matrix U′, i.e., Ũ = UU′.
Numerical experiences21 showed that U′ is very close to unit.
That is, the LMOs constructed by solving eqs 26 and 31 are
very similar to each other. The former are of course identical to
those by the top-down localization (eq 20). The present
“bottom-up, least-change” localization is an alternative to that
proposed by Malrieu and co-workers22 through the diagonal-
ization of the (dressed) CIS (single configuration interaction)
matrix. Although only two blocks (occupied and virtual) have
been considered here, the formulation can also be extended to
multiple blocks,36 such that ROHF/ROKS (restricted open-
shell HF/KS) or CASSCF (complete active space SCF)
inactive, active, and virtual orbitals can also be localized in a
bottom-up manner, again alternative to that proposed by
Malrieu and co-workers.23

3. THE LOCAL BASIS
The above least-change algorithm ensures that the transformed
set of orbitals {ϕ̃μ} is most similar to whatever initial basis {ϕμ}.
As such, it is absolutely essential to first prepare an initial local
basis that is linearly independent and (optionally) orthonormal
and, in particular, can clearly be decomposed into occupied and
virtual subsets. The least-change localization is bound to fail if
some occupied (virtual) ϕμ functions become instead the
dominant components of the final virtual (occupied) LMOs.
There can be many different ways to construct such a local
basis, such as

(1) the orthonormal NBOs35 obtained through a series of
diagonalizations of the one- and two-centered blocks of
the molecular density matrix in the orthonormal NAO
basis,34

(2) the nonorthogonal bond orbitals constructed with
maximally localized hybrid AOs,10

(3) the hierarchically orthonormalized atomic cores, bond
orbitals, and virtual OAOs,22,23

(4) the fragment orbitals (FOs) from separate diagonaliza-
tions of the fragment density matrices projected from the
molecular density matrix in the AO basis12 (note, the
FOs are orthonormal within a fragment but non-
orthogonal between fragments),

(5) the orthonormal regional orbitals (ROs)14,15 from
separate diagonalizations of the regional blocks of the
molecular density matrix in the OAO basis,

(6) the orthonormal “primitive fragment LMO” (pFLMO)21

obtained from subsystem SCF calculations,
(7) the decomposition of the AOs into minimal Boys LMOs

(including the occupied and valence virtual orbitals) and
protohard atomic virtual orbitals,16

(8) the decomposition of the AOs into minimal least-change
LMOs (including the core/valence occupied and valence
virtual orbitals) and atomic virtual orbitals,17,18

(9) the Cholesky decomposition of the molecular density
matrix in the AO basis.11

Scheme 9 is already a noniterative approach for constructing
occupied LMOs with locality inherited from the sparsity of the
density matrix. However, the so-obtained LMOs are usually less
local than, for example, the Boys LMOs and should hence be
regarded as prelocal. They may be taken as the initial guess to
speed up subsequent top-down localizations.28 The idea can
also be extended to virtual LMOs, not yet done though. Both
schemes 7 and 8 amount to manipulating directly the AOs
without explicit recourse to chemical intuition. These two kinds
of local bases are very similar in structure and dimension.
However, unlike the former,16 the latter17,18 does not rely on
the quality of a minimal AO set (e.g., STO-3G). Schemes 1−6
all take chemical intuition (Lewis structure, functional group, or
fragment in general) as input. Apart from some algorithmic
differences, they differ mainly in the definition of fragments.
For instance, the chemical distinction of core, lone-pair, and
few-center bond orbitals is imposed from the outset in schemes
1−4, while they are realized in the end by localizing the
subsystem orbitals in scheme 6. In contrast, the ROs by scheme
5 are delocalized throughout the prechosen regions.
Given so many ways for preparing the initial local basis, the

preference can only be judged from whether the scheme is
universal (i.e., effective for all kinds of gapped molecules and
AOs), operationally simple, and populationally transferable
(i.e., no significant change in orbital occupation when
transformed to the final LMOs). Taking all the criteria into
account, we think scheme 6 is most preferred. Here, the whole
molecule is first divided into NF disjoint fragments. Each
fragment is then capped with a buffer, which is just those parts
of the molecule directly bonded to the considered fragment.
The dangling bonds are finally saturated with hydrogen atoms
to form NF closed subsystems. Taking 1,3,5,7,9,11-dodecahex-
ayne (C12H2) as an example, one triple bond can be chosen as a
fragment, with its neighboring triple bonds as the buffer. We
then have two identical subsystems of C4H2 and four identical
subsystems of C6H2, see Figure 1. The conventional SCF
calculations can be carried out for the unique subsystems in
parallel. Since the subsystems are very small, any top-down
localization schemes can be applied to generate subsystem
LMOs. By virtue of the Löwdin population, the LMOs centered
on every fragment can be identified. The basis functions of the
buffer atoms are retained since they are necessary to describe
the local environment of the fragments. However, the basis
functions of the added link atoms have to be projected out. The
resulting fragment orbitals {ξμ

I } are nonorthogonal and linearly
dependent. Instead of performing a canonical orthonormaliza-
tion, we consider a two-step procedure: The linear
independency is first achieved by eliminating those ξμ

I that
have largest overlaps with the eigenvectors {vp} of the overlap
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matrix ⟨ξμ
I |ξv

J⟩ with eigenvalues smaller than a threshold (e.g.,
10−6). In case of degeneracy, those vp and ξμ of larger OSs are
first eliminated. The surviving {ξμ

I } are finally symmetrically
orthonormalized, leading to the desired linearly independent
and orthonormal pFLMO ϕpLMO = {ϕμ} in eq 25. The same
procedure can also be applied to the AOs. In the end, we have
the same number of local pFLMOs and OAOs but the former
have a clear separation of occupied and virtual subsets. Taking
the pFLMOs as the basis, the SCF calculation for the whole
molecule can be carried out, which usually requires fewer
iteration cycles to converge than that starting with the
superposition of atoms. The computational overhead for
preparing the pFLMOs is hence compensated. The one-step
transformation U (eq 20 or 21) costs essentially nothing.
Therefore, compared with the conventional top-down local-
izations, both occupied and virtual LMOs can be obtained for
free. Since they are localized on the same fragments as the
pFLMOs, the so-obtained LMOs have been called “fragment
LMOs” (FLMO).21 At variance with such a one-step top-down-
like localization, we can also perform an iterative bottom-up
localization by solving eq 26 or 31 as discussed above. In either
case, the global SCF in the pFLMO basis can be regarded as a
“conquer” step. Because of this, the “divide” step for generating
the pFLMOs is much less critical than other fragmentation

schemes that “conquer” only the energy but not the wave
function.
Finally, we remark that the present projection (eq 5) and

symmetric orthonormalization (eq 13) procedures for trans-
forming the pFLMOs to the FLMOs can also be viewed as a
special kind of block-diagonalization of the molecular density
matrix in the pFLMO basis. However, at variance with the
series of Jacobi rotations employed in the construction of the
natural13 and regional (RLMO)14,15 LMOs, the locality is
preserved here by the least-change algorithm, which is unique
and rigorous. It will be shown below that the present FLMOs
are indeed very similar to those by the top-down localization. In
contrast, in the case that the locality of the density matrix is
very low, for example, for highly conjugated systems,38 the
locality of the RLMOs is also very low. This explains why some
frozen RLMOs have to be reactivated in the elongation
approach.39

4. ILLUSTRATIONS

Except for C12H2 shown in Figure 1, C60 is taken as another
representative of highly conjugated systems. Here, one five-
member ring is chosen as a fragment, with the five adjacent six-
member rings as the buffer. After adding in the link hydrogen
atoms, we obtain 12 identical subsystems C20H10. The trust
region algorithm26 for minimizing the modified FB functional
(eq 3) was implemented into the BDF pakcage.40 The Dunning
cc-pVDZ, aug-cc-pVDZ, aug-cc-pVTZ and cc-pVQZ basis
sets41 were employed in the HF calculations.
The first point to be addressed is the quality of the initial

pFLMOs. This can be monitored by their occupation numbers,
nμ = 2⟨ϕμ|P̂o|ϕμ⟩. Ideally, nμ is equal to 2 (0) for all the
occupied (virtual) pFLMO orbitals. Deviations from such ideal
occupations are plotted in Figure 2 for the pFLMOs obtained
by minimizing the subsystem functionals nΩ2 with n = 0.5, 1, 2.
It is seen that, for both molecules, the nμ of the pFLMOs are
very close to their ideal values. The deviations from the total
number of electrons are only −0.11 (n = 0.5), −0.09 (n = 1),
and −0.08 (n = 2) for C12H2 and −0.24 (n = 0.5), −0.24 (n =
1), and −0.25 (n = 2) for C60. In this regard, the pFLMOs are
much better than the symmetrically orthogonalized local bases
carefully optimized by Jorgensen,17 where the deviations may
be up to dozens of electrons for similar systems (the situation
may be improved, but only slightly, by further localizing

Figure 1. Fragmentation of C12H2.

Figure 2. Deviation of individual pFLMO occupations. Vertical lines separate occupied (left) and virtual spaces. cc-pVDZ results.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar500082t | Acc. Chem. Res. 2014, 47, 2758−27672762



separately the core, valence, and unoccupied components of the
valence basis18).
The OSs (σ2)i for the pFLMOs, FLMOs, and (top-down)

LMOs of C12H2 and C60 are plotted in Figure 3. It is seen that,
for a given nΩ2, the OS curves for the three sets of orbitals
essentially coincide for both the occupied and virtual spaces,
confirming again the high quality of the pFLMOs on one hand
and the great similarity between the FLMOs and LMOs on the
other. It is also clear that, when going from 0.5Ω2 via 1Ω2 to 2Ω2,
the most local orbitals become slightly loosened, whereas the
most delocalized orbitals are strongly tightened, leading to
σmin(n = 0.5) < σmin(n = 1) ≪ σmin(n = 2) for the minimal
(σmin) and σmax(n = 0.5) > σmax(n = 1) ≫ σmax(n = 2) for the
maximal (σmax) OSs, see Table 1. Such behaviors can well be
understood by looking at the corresponding weight functions
√x, x, and x2. Obviously, during the minimization process, √x
and x2 provide the largest weights for x < 1 and x > 1,
respectively. As a result, 2Ω2 tends to provide balanced
localizations of the virtual and occupied LMOs, such that
they are localized roughly in the same regions. It is even more
so when the penalty exponent n is further increased.19 In
contrast, the OSs of the LMOs by 0.5Ω2 and 1Ω2 have a larger
span. However, their averaged OSs (σav) are markedly smaller
than those by 2Ω2, σav(n = 0.5) < σav(n = 1) < σav(n = 2). The
reason is that the majority of the LMOs by 0.5Ω2 and 1Ω2 have
smaller OSs than those by 2Ω2. Note that such penalty
behaviors are universal.
To check the basis set dependence of the localization, we

further carried out HF calculations for C12H2 with the aug-cc-
pVDZ, aug-cc-pVTZ, and cc-pVQZ basis sets. It is seen from
Figure 4 that while the pFLMO and FLMO OS curves still
overlap each other, there do exist tiny differences between the
FLMOs and LMOs, particularly in the high OS end.
Specifically, in the case of 2Ω2, some of the virtual FLMOs

are somewhat more delocalized than the corresponding LMOs,
σmax(virtual FLMO) > σmax(virtual LMO) (see Table 2). The
opposite is true in the case of 0.5Ω2. The case of 1Ω2 is
intermediate, where the relative ordering of σmax(virtual
FLMO) and σmax(virtual LMO) are basis set dependent.
Actually, the averaged OS is more instructive: σav(virtual

Figure 3. Orbital spreads for the pFLMOs, FLMOs, and LMOs of C12H2 (a−c) and C60 (d−f). Vertical lines separate occupied (left) and virtual
spaces. cc-pVDZ results.

Table 1. Orbital Spreads (OS) for Various Orbitals of C12H2
and C60

a

occupied virtual

molecule orbital σmin σmax σav σmin σmax σav

C12H2 CMO 2.44 13.52 8.25 5.03 16.93 9.26
n = 0.5 pFLMO 0.31 1.96 1.32 1.16 5.82 2.18

FLMO 0.31 1.97 1.31 1.16 5.81 2.18
LMO 0.31 1.97 1.31 1.15 6.04 2.13

n = 1 pFLMO 0.32 1.92 1.30 1.28 4.89 2.20
FLMO 0.32 1.96 1.31 1.28 4.88 2.20
LMO 0.32 1.97 1.31 1.21 4.92 2.17

n = 2 pFLMO 1.28 1.73 1.55 1.91 2.54 2.31
FLMO 1.31 1.76 1.57 1.91 2.54 2.32
LMO 1.28 1.75 1.57 1.99 2.79 2.30

C60 CMO 6.61 7.30 6.90 6.01 9.32 7.51
n = 0.5 pFLMO 0.33 2.87 1.35 1.34 3.09 2.09

FLMO 0.31 2.89 1.33 1.34 3.09 2.09
LMO 0.31 2.85 1.32 1.34 3.04 2.07

n = 1 pFLMO 0.34 2.40 1.37 1.48 2.93 2.10
FLMO 0.32 2.41 1.35 1.48 2.93 2.10
LMO 0.32 2.35 1.34 1.48 2.86 2.08

n = 2 pFLMO 1.53 1.86 1.67 1.87 2.47 2.16
FLMO 1.53 1.85 1.66 1.91 2.47 2.16
LMO 1.43 1.92 1.63 1.89 2.43 2.14

a
nΩ2 (eq 3) was used for both pFLMOs and LMOs (cc-pVDZ). σmin,
σmax, and σav: minimal, maximal, and averaged OSs.
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FLMO) > σav(virtual LMO) regardless of the basis set and
localization functional. That the FLMOs are somewhat more
delocalized than the LMOs for such delocalized electronic
structures and such extended basis sets is hardly surprising,
since the FLMOs do not fully minimize the localization
functional nΩ2.
The real question is whether the degree of localization of the

FLMOs is sufficient. To check this, we take the absolute
overlaps, Oai,

∫ ϕ ϕ= | ⃗ ⃗ | ⃗ ∈O r r r( ) ( ) d [0, 1]ai a i
3

(32)

to measure the significance of particle−hole (p-h) pairs: Those
with Oai smaller than a threshold can be neglected. It is seen
from Table 3 that essentially no CMO pairs can be neglected,
whereas the LMO pairs can significantly be cut off. In
particular, the cutoff efficacy follows the ordering 0.5Ω2 > 1Ω2
> 2Ω2. Therefore, it is 0.5Ω2 instead of nΩ2 (≥2) that should be
recommended as a replacement of the original FB functional
1Ω2. In other words, enhancing the locality of the most
delocalized virtual LMOs via a large penalty exponent is not
really effective for cutting down the p-h pairs. This is an
important finding, contrary to the statement19 that the

existence of a few virtual LMOs with large OSs will ruin the
efficiency of local correlation/excitation approaches. The cutoff
efficacy of the FLMO pairs is marginally lower (by up to 4%)
than the LMO ones. This price is acceptable in view of the
gained efficiency over the global top-down localization. The use
of the FLMOs does lead to very efficient linear-scaling time-
dependent density functional theory with a very small
prefactor,21 which can now routinely be applied to capture
ca. 400 excited states of any molecules composed of ca. 300
atoms described by ca. 4000 basis functions.42 In addition, the
underlying fragment picture also allows for easy and pictorial
interpretations of the excitation dynamics.

5. CONCLUSIONS AND OUTLOOK

The basic requirement for the localizability of CMOs is the
existence of a gap between the occupied and virtual spaces. If
this is true, no matter how seemingly delocalized the electronic
structure looks, the CMOs can always be localized by choosing
an appropriate localization functional. The optimization of such
a functional is then the task to be accomplished. This is by no
means trivial, in particular when the size of systems increases. It
has been shown here that such a heavy task of optimization can

Figure 4. Orbital spreads for the pFLMOs, FLMOs, and LMOs of C12H2 with various basis sets.
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significantly be alleviated through the generic idea of “from
fragments to molecule”, where the optimization of the
localization functional is applied only to small subsystems for
generating fragment-centered pFLMOs. A least action can then
be taken to obtain the desired orthonormal LMOs. This is
apparently a “synthesis” process, which is conceptually and

operationally simple and essentially free. Extensions of the idea

to relativistic spinors as well as CASSCF orbitals/spinors are

straightforward. It is certainly possible to design a freeze-and-

thaw algorithm to alleviate the global SCF/CASSCF problem

by decomposing the pFLMOs into frozen and active subsets.

Table 2. Orbital Spreads for Various Orbitals of C12H2 with Various Basis Setsa

occupied virtual

basis orbital σmin σmax σav σmin σmax σav

aug-cc-pVDZ CMO 0.64 13.52 6.55 4.60 18.43 10.14
n = 0.5 pFLMO 0.36 2.11 1.45 1.19 9.79 3.17

FLMO 0.31 1.97 1.31 1.19 9.78 3.17
LMO 0.31 1.98 1.31 1.13 10.98 2.99

n = 1 pFLMO 0.35 2.12 1.43 1.39 10.11 3.27
FLMO 0.32 1.97 1.31 1.39 10.11 3.27
LMO 0.32 1.98 1.31 1.37 9.38 3.11

n = 2 pFLMO 1.37 1.95 1.68 2.20 5.08 3.61
FLMO 1.36 1.77 1.58 2.22 5.09 3.61
LMO 1.31 1.76 1.58 3.05 4.25 3.42

aug-cc-pVTZ CMO 0.65 13.52 6.45 5.33 16.09 9.90
n = 0.5 pFLMO 0.38 2.56 1.64 1.03 10.37 2.82

FLMO 0.31 1.97 1.31 1.03 10.37 2.82
LMO 0.31 1.98 1.31 0.95 10.39 2.60

n = 1 pFLMO 0.39 2.30 1.46 1.28 7.59 2.96
FLMO 0.32 1.97 1.31 1.27 7.59 2.96
LMO 0.32 1.97 1.31 1.20 7.77 2.81

n = 2 pFLMO 1.40 1.98 1.72 2.34 5.38 3.34
FLMO 1.35 1.77 1.58 2.34 5.38 3.34
LMO 1.31 1.76 1.58 2.95 4.26 3.20

cc-pVQZ CMO 2.52 13.53 8.26 5.05 17.24 9.43
n = 0.5 pFLMO 0.33 2.27 1.43 0.61 6.97 1.80

FLMO 0.31 1.97 1.31 0.61 6.94 1.80
LMO 0.31 1.98 1.31 0.59 7.04 1.72

n = 1 pFLMO 0.34 2.15 1.40 0.96 4.26 1.94
FLMO 0.32 1.97 1.31 0.96 4.25 1.94
LMO 0.32 1.97 1.31 0.93 4.56 1.89

n = 2 pFLMO 2.04 1.32 1.65 1.70 3.92 2.05
FLMO 1.34 1.76 1.58 1.69 3.92 2.05
LMO 1.58 1.76 1.31 1.80 2.59 2.00

a
nΩ2 (eq 3) was used for both pFLMOs and LMOs (cc-pVDZ). σmin, σmax, and σav: minimal, maximal, and averaged OSs.

Table 3. Number of Effective p−h Pairs (%) with Oai > ηa

molecule basis Nph η CMO LMO (0.5) LMO (1) LMO (2) FLMO (0.5) FLMO (1) FLMO (2)

C12H2 cc-pVDZ 5217 10−1 84.3 26.2 27.0 34.2 27.3 26.9 34.2
10−2 99.9 63.7 68.4 88.2 65.7 68.9 84.1
10−3 100.0 91.1 95.8 99.8 92.5 95.8 99.7

aug-cc-pVDZ 9250 10−1 74.8 23.0 23.6 29.7 24.0 24.1 31.5
10−2 98.4 66.3 70.3 83.8 68.5 69.8 84.0
10−3 100.0 93.6 97.5 100.0 95.4 96.8 99.9

aug-cc-pVTZ 20276 10−1 74.9 21.8 23.0 29.9 23.3 24.0 31.9
10−2 98.7 65.5 71.6 86.3 69.5 72.4 85.4
10−3 100.0 92.7 98.6 100.0 97.0 98.5 100.0

cc-pVQZ 25271 10−1 80.9 19.9 22.7 27.2 20.8 23.7 28.5
10−2 98.5 56.9 64.8 80.0 60.3 64.6 77.8
10−3 100.0 85.7 94.8 100.0 90.0 92.6 99.3

C60 cc-pVDZ 118800 10−1 99.7 8.8 9.0 11.8 9.0 9.2 12.0
10−2 100.0 44.6 52.0 69.9 46.7 52.7 71.2
10−3 100.0 84.5 88.2 100.0 87.0 88.8 100.0

aNph: total number of pairs. Penalty exponents are in parentheses.
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Work along these directions is being carried out at our
laboratory.
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